

#### A Catalogue of Geometrically-Modelled Coronal Mass Ejections Observed by the STEREO Heliospheric Imagers

D. Barnes<sup>1</sup>, J. Byrne<sup>1</sup>, J. Davies<sup>1</sup>, R. Harrison<sup>1</sup>, C. Perry<sup>1</sup>,
C. Möstl<sup>2</sup>, A. Rouillard<sup>3</sup>, V. Bothmer<sup>4</sup>, L. Rodriguez<sup>5</sup>, J. Eastwood<sup>6</sup>,
E. Kilpua<sup>7</sup>, P. Gallagher<sup>8</sup>, D. Odstrčil<sup>9</sup>

(1) STFC, Rutherford Appleton Laboratory, UK;

(2) University Graz, Austria;

(3) Paul Sabatier Université, France;

(4) University of Göttingen, Germany;

(5) Royal Observatory of Belgium, Belgium;

(6) Imperial College London, UK;

(7) University of Helsinki, Finland;

(8) Trinity College Dublin, Ireland;

(9) George Mason University, USA

- A description of the basic HI CME catalogue
- Modelling techniques used to estimate CME kinematic properties from HI observations
- Statistical properties from the new CME catalogue
- Stereoscopic modelling of CMEs observed by both spacecraft
- Summary



## **The HELCATS HI-Catalogue**

Contains the basic observational properties of CMEs observed during the science phase of the STEREO mission (April 2007 -September 2014)







## **CME Tracking**

• CMEs are identified in time/elongation plot





## **CME Tracking**

• CMEs are identified in time/elongation plot

• Tracks are manually identified





## **CME Tracking**

• CMEs are identified in time/elongation plot

• Tracks are manually identified



• Kinematic properties are determined based on assumptions of CME morphology (Davies et al. 2012)



#### 1<sup>st</sup> Model: Fixed-phi



$$v(t - t_0) = \frac{r_0 \sin(\varepsilon(t))}{\sin(\varepsilon(t) + \varphi)}$$



#### 2<sup>nd</sup> Model: Self-Similar Expansion





### 3<sup>rd</sup> Model: Harmonic Mean



$$v(t - t_0) = \frac{2r_0\sin(\varepsilon(t))}{\sin(\varepsilon(t) + \varphi) + 1}$$



#### 3<sup>rd</sup> Model: Harmonic Mean





# **Catalogue of CME Kinematic Properties**





#### **CME Statistical Properties**



• CME latitude distributions consistent with established behaviour



## **CME Statistical Properties**



• Stacked annual speed histograms from HELCATS HI catalogues and LASCO CDAW catalogue (Yashiro et al. 2004)



#### **CME Statistical Properties**



- . Same solar cycle trend seen in HI and LASCO
- Mean speed are greater in HI by ~120kms<sup>-1</sup>
- Due to 'projection effects' in coronagraph speed estimates





























#### **Summary**

- Heliospheric Cataloguing Analysis and Techniques Service
- 1901 CMEs identified throughout the lifetime of HI instruments
- 1353 CMEs tracked and kinematic properties determined
- Catalogues agree with established CME behaviour, but show greater speeds
- Stereoscopic analysis allows study of CME accelerations/deflections in HI

Thanks for listening

